dfc
Implementation for the DFC2020 competition dataset using Sentinel 1&2 data and IGBP labels in torchgeo
.
- class DFC2020(root: str, split='val', use_s2hr=False, use_s2mr=False, use_s2lr=False, use_s1=False, labels=False, transforms: Callable[[...], Any] | None = None)
PyTorch dataset class for the DFC2020 dataset
- plot(sample: dict[str, Tensor], show_titles: bool = True, suptitle: str | None = None, classes: dict[int, str] | None = None, colours: dict[int, str] | None = None) Figure
Plot a sample from the dataset.
Adapted from
torchgeo.datasets.DFC2022.plot()
for DFC2020.- Parameters:
sample (dict[str, Tensor]) – A sample returned by
__getitem__()
.show_titles (bool) – Flag indicating whether to show titles above each panel.
suptitle (str) – Optional; String to use as a suptitle.
classes (dict[int, str]) – Optional; Dictionary mapping class labels to class names. Default:
self.classes
.colours (dict[int, str]) – Optional; Dictionary mapping class labels to colours. Default:
self.colours
.
Added in version 0.28.
- Returns:
A
matplotlib
Figure
with the rendered sample.- Return type:
- class SEN12MS(root: str, split='train', use_s2hr=False, use_s2mr=False, use_s2lr=False, use_s1=False, labels=False, transforms: Callable[[...], Any] | None = None)
PyTorch dataset class for the SEN12MS dataset
Expects dataset dir as: >>> - SEN12MS_holdOutScenes.txt >>> - ROIsxxxx_y >>> - lc_n >>> - s1_n >>> - s2_n
SEN12SEN12MS_holdOutScenes.txt contains the subdirs for the official train/val split and can be obtained from: https://github.com/MSchmitt1984/SEN12MS/blob/master/splits